

Tetrahedron Letters 41 (2000) 1741-1745

TETRAHEDRON LETTERS

Synthesis of isothiochroman 2,2-dioxide and 1,2-benzooxathiin 2,2-dioxide gyrase B inhibitors

Christophe Peixoto,^a Patrick Laurin,^a Michel Klich,^a Claudine Dupuis-Hamelin,^b Pascale Mauvais,^b Patrice Lassaigne,^b Alain Bonnefoy ^b and Branislav Musicki ^{a,*} ^aMedicinal Chemistry, Hoechst Marion Roussel, 102 Route de Noisy, 93235 Romainville Cedex, France

^bInfectious Disease, Hoechst Marion Roussel, 102 Route de Noisy, 93235 Romainville Cedex, France

Received 1 October 1999; accepted 4 January 2000

Abstract

The design, synthesis and in vitro biological evaluation of isothiochroman 2,2-dioxide and 1,2-benzooxathiin 2,2-dioxide analogues of coumarin inhibitors of gyrase B are described. Compared to coumarin derivatives, compounds of the 1,2-benzooxathiin 2,2-dioxide series display improved inhibitory potency in negative supercoiling of relaxed DNA gyrase. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: antibiotics; glycosidation; hydrogen bonding; structure-activity.

Over the past several years our efforts have been directed towards the design of effective, orally bioavailable coumarin antibiotics inhibitors of bacterial DNA gyrase.¹ Recently, we have disclosed a series of coumarin congeners bearing at the coumarin part of the molecule amide isosteres (1),^{2a,b,e} carboxyl group,^{2c} or basic amino groups.^{2d} As in the complexes of these inhibitors with the 24 kDa N-terminal fragment of gyrase B protein, one of the key interactions is electrostatic/hydrogen bonding between the ester and carbonyl oxygens of the coumarin moiety and Arg-136,³ we reasoned that the replacement of the coumarin carbonyl group with a more polar sulfone functionality would lead to stronger inhibition of DNA gyrase and improved antibacterial activity. Morever, the polar nature of the sulfone group would confer better aqueous solubility to the analogues. This led to the design of two series of DNA gyrase inhibitors wherein the coumarin was replaced with isothiochroman 2,2-dioxide and 1,2-benzooxathiin 2,2-dioxide derivatives.

^{*} Corresponding author. Tel: +33-1-4991-4007; fax: +33-1-4991-5087; e-mail: branislav.musicki@aventis.com (B. Musicki)

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00044-7

The synthesis of isothiochroman 2,2-dioxide inhibitors of gyrase B is depicted in Scheme 1. 3-Hydroxy-2-methylbenzoic acid (3) was prepared from 3-nitro-2-methylbenzoic acid (2) according to the literature.⁴ The acid **3** was converted to methyl ester by HCl/MeOH at reflux in quantitative yield. Methylation of the free phenol under standard conditions (Me₂SO₄/K₂CO₃ in acetone) provided methyl ether **4**. Reduction of the ester group in **4** with LiAlH₄ in ether and subsequent conversion of the resulting benzyl alcohol with CaCl₂/HCl furnished benzyl chloride **5**. This was converted with ethyl thioacetate in the presence of NaH in DMF to *S*-alkyl derivative **6** which was hydrolysed to free acid. Cyclisation of the acid to isothiochroman **7** was effected with P₂O₅ in toluene in the presence of Celite. Oxidation of **7** with 3-chloroperoxybenzoic acid in CH₂Cl₂ gave the sulfone **8** which was demethylated with a mixture of HBr-acetic acid to provide the free phenol derivative **9** ready for glycosylation. Attempted glycosylation of the noviose carbonate **10**, prepared from noviose and 1,1'-carbonyldiimidazole in dichloroethane at reflux, with **9** under Mitsunobu's conditions provided a low yield (10%) of the desired α -anomer **12**. Searching for an alternative method of activation of the anomeric position of noviose carbonate **10**, we prepared the corresponding trichloroacetimidate **11** using trichloroacetonitrile in the presence of

Scheme 1. *Reagents and conditions*: (a) H₂, Pd–C/10%, EtOH, rt, 98%; (b) NaNO₂, aq. H₂SO₄, 0°C then reflux, 99%; (c) MeOH, HCl gas, reflux, quant.; (d) Me₂SO₄, K₂CO₃, acetone, rt, 72%; (e) LiAlH₄, Et₂O, rt, quant.; (f) CaCl₂, HCl, 94%; (g) HSCH₂CO₂Et, NaH, DMF, rt, 72%; (h) NaOH, MeOH, H₂O, rt, 86%; (i) P₂O₅, Celite, toluene, 90°C, 77%; (j) 3-ClC₆H₄CO₃H, CH₂Cl₂, 0°C, 60%; (k) HBr, AcOH, reflux, 90%; (l) 1,1'-carbonyldiimidazole, ClCH₂CH₂Cl, reflux, 70%; (m) NC–CCl₃, CH₂Cl₂, Cs₂CO₃ cat, rt, quant.; (n) BF₃–Et₂O, CH₂Cl₂, 84%; (o) ClCO₂Et, DMAP, CH₂Cl₂, rt, 60%; (p) HC=CCH₂ONH₂⁻HCl, LiClO₄, Py, rt, 33%

Scheme 2. *Reagents and conditions*: (a) DMF, POCl₃, CICH₂CH₂Cl, rt, 73%; (b) MnO₂, KCN, AcOH, MeOH, rt, 68%; (c) DHP, cat TsOH, Et₂O, rt, 71%; (d) MsCl, Et₃N, Et₂O, rt, 90%; (e) NaH, DMF, 0°C, 82%; (f) 1 M HCl in MeOH, rt, 86%; (g) **11**, BF₃Et₂O, CH₂Cl₂, 50%; (h) 3-CIC₆H₄–NCO, DMAP, CH₂Cl₂, rt, 23%; (i) HC=CH₂ONH₂-HCl, LiClO₄, Py, rt, 64%; (j) PPh₃, EtO₂CN=NCO₂Et, CH₂Cl₂, rt, 15%; (k) Ac₂O, DMAP, CH₂Cl₂, rt; (l) KOMe, MeOH, 0°C, 37% (from **27**)

catalytic quantities of Cs_2CO_3 in CH_2Cl_2 . The imidate **11** underwent smoothly glycosylation with **9** in the presence of BF_3 – Et_2O in dichloromethane to afford 84% of desired α -glycoside **12**. As in the case of coumarin series^{2a} isothiochroman 2,2-dioxide derivative **12** underwent C-acylation at C-3 with ethyl chloroformate in the presence of DMAP to provide **13**. Opening of the noviosyl carbonate part of **13** with *O*-propargylhydroxylamine in the presence of LiClO₄ in pyridine afforded a thermodynamic mixture of 3'- and 2'-*N*-propargyloxycarbamates **14** and **15** (4:1)⁵ in 33% yield.

The synthetic approach to 1,2-benzooxathiin 2,2-dioxide inhibitors of gyrase B is summarised in Scheme 2. Vilsmeyer formylation⁶ of 2-methylresorcinol **17** provided 2,4-dihydroxy-3methylbenzaldehyde that was oxidised to the corresponding methyl ester **18** using Corey's procedure.⁷ Regioselective tetrahydropyranylation of 18 afforded THP monoprotected derivative 19 in 74% yield. The phenol 19 was then converted under standard conditions into methanesulfonate 20 that was subjected to basic cyclisation with NaH in DMF to furnish 1,2-benzooxathiin 2,2-dioxide derivative 21. Deprotection of THP in 21 with HCl/MeOH provided the intermediate 22 ready for glycosylation. Coupling of 22 with activated noviose carbonate 11 under BF₃-Et₂O catalysed conditions afforded α -glycoside 23 in 50% yield after chromatographic separation. Acylation at C-3 of 1,2-benzooxathiin 2,2-dioxide portion of 23 with 3-chlorophenylisocyanate in the presence of DMAP furnished the corresponding anilide 24. This was subjected to lithium perchlorate catalysed opening of the noviosyl carbonate portion with O-propargylhydroxylamine in pyridine to provide, similarly to the isothiochroman 2,2-dioxide case, a mixture of regioisomeric 3'- and 2'-N-propargyloxycarbamates 25 and 26 in the ratio 4:1, respectively. The 1,2-benzooxathiin 2,2-dioxide analogue 29 bearing 3'-(5-methylpyrro-2yl)ester at noviose was synthesised by Mitsunobu's coupling between pyrrole-noviose 27^{2a} and 22. The introduction of an acetyl group at the 3-position of the 1,2-benzooxathiin 2,2-dioxide 28 by the established technique^{2a} was accompanied by acetylation of 2'-OH of noviose. Hydrolysis of this 2'-acetate in MeOH with KOMe gave 1,2-benzooxathiin 2,2-dioxide analogue 29.

The results of the inhibition of the supercoiling activity of S. aureus or E. coli DNA gyrase by

novobiocin, clorobiocin and isothiochroman 2,2-dioxide and 1,2-benzooxathiin 2,2-dioxide derivatives are shown in Table 1. Also in Table 1 are the corresponding results of the reference compounds incorporating the coumarin scaffold: 16^{2b} (Scheme 1) and 30^{2a} (Scheme 2). As predicted, substitution of the C=O carbonyl group of coumarin 30 by SO₂ 29 did result in a twofold increase of inhibitory potency in negative supercoiling of DNA gyrase. However, replacement of -O-CO- of coumarin moiety 16 by -CH₂-SO₂- in isothiochroman 2,2-dioxide 14 lowered the inhibitory activity by an order of magnitude. Taking into account the distances between the guanidinium group of Arg-136 and the ester oxygen and carbonyl group of coumarin ring as 3.2 and 2.6 Å, respectively,^{3c} the principal hydrogen bonding interaction could be attributed to Arg-136 and the C=O of the coumarin moiety. Decrease in activity of isothiochroman 2,2-dioxide derivative 14 with respect to 16 could be explained by the CH₂ of 14 hindering the tight binding of the 8-Me group of coumarin to a hydrophobic pocket. Although the 1,2-benzooxathiin 2,2-dioxide series displayed increased in vitro inhibitory activity when compared to coumarin analogues, the series was completely devoid of antibacterial activity (MIC >40). Increased polarity caused by replacement of the coumarin carbonyl group by SO_2^8 completely abolished the intracellular uptake of the analogues. These results clearly demonstrate that the fine tuning of lipophylicity of gyrase B inhibitors is essential for their biological activity.

 Table 1

 In vitro activity of isothiochroman 2,2-dioxide and 1,2-benzooxathiin 2,2-dioxide inhibitors against S.

 aureus or E. coli DNA gyrase supercoiling (IC_{50}),^{a,b} and selected in vitro antibacterial activity (MIC)^c

		Clorobiocin					
Compound	Novobiocin		14	16	25	29	30
IC ₅₀ nov ^{a,b} /IC ₅₀ comp	$1^{a,b}$	1.7^{a}	0.33 ^b	5.6ª	1 ⁶	4.2 ^a	2ª
MIC(µg/mL) S. aureus 011HT3	≤0.04	≤0.04	>40	1.2	>40	>40	≤0.04

a) IC_{50} was determined for gyrase B of *E. coli* against novobiocin (0.25 µg/mL) as reference. For the details see ref. 2a; b) IC_{50} was determined for gyrase B of *S. aureus* against novobiocin (0.5 µg/mL) as reference. For the details see ref. 2e; c) MIC, Minimal Inhibitory Concentrations (µg/mL) were measured by using a twofold broth microdilution after 24 hours incubation.

In conclusion, we succeeded in replacing the coumarin scaffold by a 1,2-benzooxathiin 2,2-dioxide skeleton to give analogues that proved to be more potent in inhibiting negative supercoiling of DNA gyrase. At the same time, however, the highly polar nature of this class of analogues had negative effects on intracellular permeability and antibacterial activity.

Acknowledgements

We are grateful to the Analytical Department (HMR, Romainville) for performing spectral analysis.

References

- For reviews on structure and mode of action of coumarins on DNA gyrase, see: (a) Reece, R. J.; Maxwell, A. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 335–375. (b) Levine, C.; Hiasa, H.; Marians, K. J. Biochim. Biophys. Acta 1998, 1400, 29–43.
 (c) Berger, J. M. Biochim. Biophys. Acta 1998, 1400, 3–18. (d) Maxwell, A. Biochem. Soc. Trans. 1999, 27, 48–53.
- (a) Laurin, P.; Ferroud, D.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2079–2084. (b) Haesslein, J.-L.; Klich, M.; Laurin, P.; Musicki, B.; Periers, A.-M. PCT. Int. Appl. WO 9935155, 1999. *Chem. Abstr.* **1999**, *131*, 454249. (c) Laurin, P.; Ferroud, D.; Schio, L.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2875–2880. (d) Ferroud, D.; Collard, J.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2881–2886. (e) Periers, A. M.; Laurin, P.; Ferroud, D.; Haesslein, J. L.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.; Bonnefoy, A.; Musicki, B. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 161–165.
- (a) Wigley, D. B.; Davies, G. J.; Dodson, E. J.; Maxwell, A.; Dodson, G. *Nature* 1991, *351*, 624–629. (b) Lewis, R. J.; Singh, O. M. P.; Smith, C. V.; Maxwell, A.; Skarzynsky, T.; Wonacott, A. J.; Wigley, D. B. *J. Mol. Biol.* 1994, *241*, 128–130. (c) Lewis, R. J.; Singh, O. M. P.; Smith, C. V.; Skarzynski, T.; Maxwell, A.; Wonacott, A. J.; Wigley, D. B. *EMBO J.* 1996, *15*, 1412–1420. (d) Tsai, F. T. F.; Singh, O. M. P.; Skarzynski, T.; Wonacott, J. A.; Weston, S.; Tucker, A.; Pauptit, R. A.; Breeze, A.; Poyser, J. P.; O'Brien, R.; Ladbury, J. E.; Wigley, D. B. *Proteins: Struct., Funct., Genet.* 1997, *28*, 41–52.
- 4. Houbion, J. A.; Miles, J. A.; Paton, J. A. Org. Prep. Proced. Int. 1979, 11, 27-32.
- 5. This mixture of regioisomers was tested without separation.
- 6. Jones, G.; Stantforth, S. P. In Organic Reactions; John Willey & Sons: New York, 1997; Vol. 49, pp. 1–330.
- 7. Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90, 5616.
- 8. Partition coefficient P expressed as logP for the compounds **29** and **30** was determined according to Ref. 9 as 3.1 and 5.2, respectively.
- 9. (a) Dross, K.; Sonntag, C.; Mannhold, R. J. Chromatogr. **1993**, 639, 287–294. (b) Dross, K.; Sonntag, C.; Mannhold, R. J. Chromatogr. **1994**, 673, 113–124.